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SUMMARY 

The objective of the program's second year research work was 

to examine the validity of the constant probability crack growth model 

while refining the transition Intensity parameter.  This work has been 

completed, thus leading to a crack growth rate equation with an explicit 

probability term.  Furthermore, work extending the applicability of 

the model to variable loading required the determination of the delay- 

time associated with a single overload.  An experimental test program 

was carried out on a titanium alloy using a potential drop technique 

to record crack length Increments as function of overload characteristics. 

This program has been completed and results will be Incorporated Into 

the basic stochastic model. 



2. REPORT 

Details of the research efforts and status of the research are 

described In the attached two papers.  One was published by the J. Eng. 

Fracture Mechanics and the second has been accepted for publication. 

3. PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORTS 

Mr. Peter Nellans 
Research Engineer 

Mr. V. Agrawal 
degree: Master of Science 

Mr. D. Zheng 
degree: Ph.D. 
expected date: July 1990 

4. INTERACTIONS 

1. A paper entitled "Ccriotant-Probablllty Crack Growth Curves" 

was presented at the 20th National Symposium on Fracture 

Mechanics, Lehlgh University, 23-25 June 1987. 

2. An Invitation was extended by Professor A. Plneau of 

Ecole des Mines to deliver a lecture on the stochastic crack 

growth modelling.  The date of the seminar Is October 14, 1987. 
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Constant-Probability   Crack   Growth   Curves 

H.   Ghonern 

Mechanics   of   ^ollds   Laboratory 

Department   of  Mechanical  Engineering and  Applied  Mechanics 

University  of  Rhode  Island,   Kingston,   RI   02881,   USA 

Abstract 

This   paper   details   a   stochastic,   time-1nhomogeneous model 

that  serves  as   a   theoretical   basis   for   the   prediction   of   crack 

growth   and   its   variability   under   constant-amplitude   loading. 
«S 

Crack  evolution   is   described / a  set   of   constant   probability 

curves, each of whose points possess equal probability of 

advancing from one position to another forward position. This 

probability is governed by a transition Intensity parameter for 

which two mathematical interpretations are examined. A 

simplified crack growth rate equation, employing one of the 

definitions, is derived and applied to A17075-T6 material for 

different loading conditions. Results of this application are 

compared  with those  experimentally  obtained. 

Introduction 

The work of Ghonem et al (1,2) describes a probabilistic 

crack growth model based on the assumption that fracture history 

can be established by employing a particular discontinuous 

Markovian process which takes into account the fundamental 

aspects of the crack growth mechanism. This approach leads to 

the  description  of  the  sample   curve   of   the   crack   growth   process 



in terms of a constant-probability criterion. When considering 

that the crack growth curve given by any continuum crack growth 

model coincides with the median growth curve, the probabilistic 

model would tnen be sufficient to describe the evolution of the 

crack length and associated scatter at any stress level (3,4). 

The present paper is an attempt to extend the concepts of the 

model by including a different definition for the transition 

intensity probability of the growth process. This will lead to 

the derivation of a simple and explicit probabilistic crack 

growth rate equation similar in structure to the Parls-Erdogan 

equation. 

The first part of the paper focuses on the constant 

probability crack growth curve concept and its model derivation, 

while the second part will deal with the application of the 

proposed  law. 

Model 

The basic model is based on the assumption the crack front 

in the crack propagation stage, as shown in Figure 1 , can be 

approximated   by   a   large   number  M  of  arbitrarily  chosen   points  a, 

o-l, M.      Each  of   these  points   in  terms   of   the   theory   of 

probability, identifies a statistical "trial" or "experiment" 

conductaed under identical conditions. The fracture state of the 

ath trial at cycle "i" is given by the crack length or random 

variable aai (K]i»X2»X3) whose evolution with time shall then be 

established. 

The  following   observations   can  be  made   regarding  aaj:: 



1- the  evolution   of   aaj[   In  the   xi,   X2   and   X3   directions 

are  statistically  independent of  each  other. 

2- the   statistical   evolution   of   aai   (x^)   is   different 

from those  of aaj_   (X2)   and aai   (X3)   in  that 

the former   consistently  increases  while the latter may 

be  described  as  a type  of  random-walk  phenomenon. 

3- for  an external  load  applied  in the  xi   direction,   the 

crack evolution  in the  X2 asn^  X3  directions  are  orders 

of  a lesser  magnitude  than that  in  the  xi   direction. 

On the basis of these obsesrvations this model is limited to 

the evolution of aai (x^) by assuming that the crack growth 

distributions of aai (X2) and aaj[ (X3) can be described by 

Dirac-Delta functions. So, 0ai will hereafter be referred to 

as  a^ . 

Due to the built-in limitations of all experimental 

techniques in crack measurement, the observed value of a^ can 

only  be  specified within a range  of: 

x   <  aj[   <  x   +   Ax 

where   Ax   is   the   experimental   error   and   x   is   the   crack   position 

calculated as   (see Fig.   2): 

r   Ax r0   <  r   <  rf (1) 

Here   "r"    Identifies   the   observable   zone   or   state   along   the 

fracture surface;   r0  is   the   initial   propagation   state,   rf   is   the 



State  Just   prior   to   catastrophic  failure  of   the  specimen  and r^, 

r2    rf-i   are  the  Intermediate   zones,   all   zones   having 

the  same  width. 

Given that the crack Is In state r, then after 1 cycles from 

the Instant of reaching r, one of two events will occur. Either 

aj[ will remain In state r (event rEj[) or aj[ will not be In 

state r (event 5Ei).  The following points should now be noted. 

a) The crack propagation process Is Irreversible (I.e. 

there Is no reweldlng of crack surfaces.)  Kence the 

crack, If It Is not In state r after 1 cycles, must 

exist In a state greater than r. 

b) Since it  Is not possible for the crack to propagate 

from on'9 state to another state without penetrating 

the adjacent one, the crack can be Identified by the 

number of cycles (1) required to advance from a given 

state to the Immediately following state. 

Based on these observations, events rEj[ and sEj[ can be seen 

as elements of a measurable space (n) (see Reference (3)) and the 

following definition of the probability measure of ai becomes 

possible. At any fatigue cycle 1, the probability that a^ is in 

state r, i.e. the probability of rEi, is defined as: 

Pfaji e ""Ei} - P{x < aj < x + Ax} (2) 

i.e.   PCEJ-) - Pr(i) (3) 



Therefore, the probability of a^ not falling within r, I.e. the 

probability  of  sEi   Is, 

PCSEi)   -   1  -  Pr(l) (U) 

It can be seen that, Pr(l) should continuously decrease as the 

number of cycles Increases. Before proceeding further to 

Identify the parameters that define Pr(l), It Is necessary to 

make  these  comments. 

Under conditions of constant amplitude loading, where no 

overloading effects are considered, the growth of a crack from a 

particular state depends only on Its present mechanical and 

mlcrostructural details. More specifically, the probability of 

a^ propagating from state r to r+1 In the cycle Interval (1, 

1+Al) depends on the event (rEi) and Is Independent of the 

events prior to 1, (rEj, J<1). to elaborate, let (r*1Ei) be the 

event of a^ jumping to (r+1) from r In the Interval (1, 1+&1). 

This represents a future event if (rEj[) Is an event In the 

present. Clearly, the future event is conditional on the 

occurrence of the present event. Given that the present has 

occurred, the probabljillty of the future is not affected by the 

probability of the occurrence of the past (rEj, J<i). Also, 

the occurrence of CEj) precludes the occurrence of the (sEj, 

J<i, s>r) due to the irreversible nature of the crack growth 

process. 

The   above   feature   is   similar   to   that   of   a   pure   birth 

Markovian  process   in which   the   future   is   determined   only   by   the 



present and not by the past, and in which the diacrete space 

variable never decreases in magnitude with increase of time. This 

analogy helps to define a transition probability that is also a 

Markovian property and introduce the conditional probability 

function  that  governs  the  crack  growth  process as: 

r+1 r+1. 
P{.r XE1 / rE1 

rE ,...rEo} - P{r ^E Ai /  Ej} 

" Prt(1) ■'      i J (5) 

where Ppt^1) is the transition probability linking the 

probability measures of two consecutive states "r" and "t" (t - 

r + 1) along the fracture surface and n/n denotes the conditional 

probability. This property, together with the evolution of a^ 

within the two event sample space iii) , describes a discrete space 

continuous  time Markov  process. 

Since   the   analogy   to   the   Markovian   process   has   been  shown, 

the   criteria  attached  to  this   process   can   be   assumed   to   be   valid 

for   the  crack  growth  as  well. 

They  are: 

1-     The   probability  aj   propagating  to  a  state   different 

from     r     in  Ai   cycles,   where   Al   is  very  small,   after 

1   cycles   elapse   in   state     r     is: 

Ps(Ai)   -   P|*l   Ai   /   rE1l   +0(Ai) 

=   Ar   Ai   ♦   0(Ai);      t-r+1 (6) 

Here,   Ar   is  a  positive  variable   indicating   the 



probability transition rate.  It describes the 

transition rate from state  r  to r+1  in  i 

cycles. 

In this analysis, \r   is assumed to be a material 

parameter which in addition to being a function of 

crack position r, should depend explicitly on both 

initial cycle i, and duration Ai.  The propagation 

process thus becomes time-inhomogeneous. 

2- The corresponding probability that aj will be in state 

r during the cycle interval Ai is: 

PrUi) - P{rEA1 / ""E!} ♦ OUi) 

- (1 - Xr Ai) ♦ OUi) (7) 

3- The probability that aj is in a state different from 

r+1 is: 

Prt(Ai) - Pl^Ai / »'Eil 

- 0(Ai)       ;  t r+1 (8) 

The time interval Ai is so small that the probability 

of advancing from  r  to a state greater than  r+1 

is almost zero. By definition, 0(Ai) Is such that. 

It   0(A1) 
A1*0   Al 

Now, let 



•     1 

A - rEi  and 

;A1 B - ""E, 

Then 

Since 

A n B - rE1+Ai 

P(A n B) - P(B/A) . P(A) 

Therefore 

PlrE1+A1} - PlrEA1 / Pit) .   r{**i\ (9) 

Substituting Equations (6), (7) and (8) In (9) we get, 

plrEl + Al} - (1 - Äp Al) • Mrlll + 0(A1) (10) 

which can be written as 

PpU + Al) - (l-ArAl) • Pr(l) +0(A1) (11) 

By transposing the term Pr(l), dividing by Al and passing to the 

limit A1*0 , equation (11) becomes 

dPr(l) 

dl 
Ar Pr(i) 
r  r 

(12) 

The  solution   of   this   equation  is 

In   Pr(l )   =   -   /Ar   di   +   L; (13) 



where L^   Is  a  constant. 

This equation describes the crack growth probability from state 

r, after i cycles elapse, in terms of the constant Lj and the 

transition  rate \r  which  is  discussed  below. 

The parameter Xr was introduced in this model as the 

transition intensity by which ai propagates from one state to the 

next. Adopting the notion that the crack growth process is a 

discrete one, the crack transition from a specific state can be 

viewed as being governed by a critical threshold energy at the 

crack tip. When such a threshold (which is environmental, 

material, stress and crack-length dependent) is satisfied by 

cyclic energy accumulation, a crack tip transition can be said to 

occur. Therefore the larger the cycle duration associated with 

the crack in a specific state, the greater the probability that 

the propagation threshold is satisfied and the greater the 

probability  that  the crack  advances   to  the following state. 

The transition intensity, Xr, can be assumed to have several 

physical interpretations, however, the primary concern at this 

point is whether Ar is a material property present only when 

there is application of cyclic loads or whether it exists even 

when  there   is   no  cycling. 

If Xr is a property that owes its existence to cyclic 

loading, then it could represent a dislocation accumulation rate, 

a microvoid growth rate, a ductility exhaustion rate or a rate at 

which any physical phenomenon occurs in the grain structure of a 

polycrys tal 1 i ne material to aid the propagation of a crack. In 

that   case,   the  magnitude   of   Xr   should   be   zero   at   any   instant 



there is no cycling. Specifically, its magnitude should be equal 

to zero at i-0, the instant at which the load cycling is about to 

begin, after the crack has reached a particular state, r. 

Keeping in mind the fact that Ar should monotonically increase 

with  i,   the  following expression  for  Ar   can  then be  chosen. 

Ar(i)   -   L(r)   iad') (1U) 

where L(r)   and  a(r)  are functions   of   the  crack  state. 

If, on the other hand, Xr is a property present even when 

there is no cyclic loading, the physical analogy for Xr would be 

completely different. Ar would then represent a dislocation 

uensity in the m i cr os tructur e or a microvoid density in the 

microstructure of a material. Thus while the property \r does 

increase in magnitude during cycling, it does not cease to exist 

when the cycling is absent. Hence, from this point of view, Xr 

should have a value corresponding to i-0, the instant at which 

the cycling is about to begin after the crack has reached a 

specified state, r. The following expression could then be 

considered. 

Ar   -   L(r)   Qa{r)i (15) 

From a purely mathematical point of view expression (15) was 

first selected to be utilized in the present model. By 

substituting  Equation   (15)   in   (13),   it   yields: 



£nPr(l)   -  -   B  ecl   +  L! (16) 

where B  -   L/C 

The  upper  and  lower  limits  of  Pr(l)   in  the  above  equation  are: 

1   >  Pr(l)   >0 (17) 

The form of equation (15) suggests that 1 has a lower boundary 

that satisfies the upper limit condition of Pr(l). Equation (16) 

thus  becomes: 

in  Pr(l)   -   B(eCIo -  eCi) 1  >   I, 

i 1 lo (18) 

where   the   parameters   B,   C  and  I0,   the   Incubation  time,   are  found 

to  be: 

n. 
B   "   Cl   ar 

1 

n2 C   -   C2   ar 

n3 n3 and     I     -   C-   [a,.^-   -   a/] o 3       r-1 r 

(19) 

(20) 

(21) 

C^,    C 2 t    c3i     nl»    n2   an<1   n3    ar6    material-,    stress-    and 

environment-dependent   parameters. 

The   application   of   the   above   equation    (18)   to   different 

steel   and  aluminum   alloys   is  detailed   in  Ref.   (3). 



In this paper the interpretation concerning Xr, as given in 

Equation (14), will be examined. By substituting this equation 

in   (13)   and  setting  the  upper  and  lower   limits  of Pr(i)   to: 

1   > Pr(i)   >  0 

one can arrive at the following solution 

Al - A(-ln Pr(i)) (22) 

wnere A 

and   ß 1 
l + o 

1 
1 + a 

A   and   B   are   considered   here   to   be   material-,   stress-   and  crack 

position dependents. 

The above equation Identifies the duration of fatigue cycles 

required for a crack at position r to propagate with a specific 

constant probability Pr(l), to a position r+1 along the fracture 

surface. By calculating 3uch durations for states rj to rf-i, 

the history of the entire constant-probability crack growth curve 

can be obtained. If an assumption is made that the crack growth 

curve generated by a continuum model coincides with the median 

growth curve, i.e., the Pr(i) - 0.5 curve, parameters A and 3 can 

be determined and Equation (22) becomes fully defined for a 

particular material and a particular constant amplitude stress 

condition. The work described below explains the procedure for 

determining   the   expressions   of  both  A   and   ß. 



Following the approach detailed in Ref (3)f work of 

Virckler et al (5), which combines crack growth data of 68 

replicate tests of A12024-T3. shown in Figure 3(a) was arranged 

in 9 constant probability crack growth curves as shown in Figure 

3(b). Data points representing cycle intervals corresponding to 

similar discrete crack positions along three different 

constant-probability curves; Pr(i) - 0.05, 0.5 and 0.95, were 

used as input to Equation (22) to determine the parameters A and 

B. Using curve regression analysis parameter ß was found to be 

constant for all state positions with a value of 0.166. The 

parameter A varied as function of r in a pattern shown in Figure 

3   which  is  fitted  into  the  form: 

1.5  x  107   ((r-1)"1   -  r"1) (23) 

Similarly, data of Yang et al (6), Figure (H), which consist of 

the distribution of crack size as function of load cycles for 

IN-100 tested for two different load conditions, were used to 

obtain the expressions for A and 0. These expressions were 

obtained  as: 

Test  Condition  I 

A   -   i4.3xl06   ((r-l)"0-70   _   r-0.7) 

ß   -  0.155 (21*) 

Test  Condition   II 



A  -  H.OöxlO6   ((r-l)"1-14   -  r'1-'4) 

0  -  0.266 (25) 

By observing the forms of A and ß, as expressed In Equations 

23-25, obtained from two different types of alloys, one can 

conclude that, while ß seems to be a constant which depends 

mainly on the material and stress condition, a general form of A 

depends  on  the  crack  position and can be  written  as: 

A  -  C^Cr-DY  -  pY) 

where C^ and Y are material- and stres-dependent parameters. 

Therefore, one can write Equation (21) as: 

Ai - C1((r-1)
Y - rY)(-lnP (i))ß 

Ax 
~  [AxY(r - 1)Y - AxYrY](-lnP)ß (26) 

since   the   crack   length   ar   can   be   written   as   ar   -   Ax«r,   thus, 

Equation   (26)   becomes 

Ai c2(a;-i aY)(-lnP)8 (27) 

where C2 ■ C^/Ax^. One should remember here that Ai is the 

number of cycles counted from the instant the crack tip reaches 

state r and P is the probability that the crack will not 

propagate from  state  r   to  the  following   state   within  Ai   cycles. 



For   the   same  value   of   Pr(l),   I.e.   operating   on   a   single   crack 

growth  curve,   Equation   (27)   can  be manipulated   as   follows: 

Ai1  •  i1  - 0  «   C2(ao
Y  -   a1

Y)(-lnP)e 

where  a0  is  a constant  that  represents the  initial   crack  length, 

Ai2  -   i2  -   i1   -   C2(ay
i  -   aJ)(-lnP)ß 

Ai     •  !„.,   -     I,  •   C^Ca^.  -  a^)(-lnP)ß 

r r_i r 2     r-1       r 

By  summing  Aii+Al2   ♦   ...   ♦   Air  one  obtains 

1     -  C_(a^ -   a^X-lnP)0 

r 2o r 

Differentiating  both  ends  w.r.t.   i;   thus: 

I   -   C2   (-Y  aj;-1     |f   )(-lnP)ß 

This   o^uation  can   be  rearranged  as; 

U -   C3   a6   (-In  P)"3 (28) 

where     C 
3       C2  Y 

and 6   »   1   -  Y 



By   multiplying   and   dividing   Equation   (28)   with   Ao2fi   ir6;   where 

Ao   la  the stress  range,   one   can  obtain: 

da       „   .   26     6     6   ,      .      nv-ß -rr  -  C  Ao       ir     a     (-   In  P) dl (29) 

where  C - C3/A020 TT
6 

Equation (29) could then be written as: 

|f - C^UK)6 (-in P)"e (30) 

which represents a crack growth rate equation for a crack 

progressing from one state to the following state along the 

fracture  surface  with  a  constant   probability  P. 

From the experimental work of Yang et al (5) and Ghonem and 

Dore (3), it Is observed that the degree of scattaer of the 

constant probability curves measured as the number of cycles that 

separates the Pr(l) » 0.95 curve from the one of Pr(l) - 0.05 at 

the same crack length decreases as the maximum applied stress, 

smax» Increases. One can assume that, at very high values of 

smax» the influence of the material microstructure and other test 

conditions would decrease to the extent that all probability 

crack-growth-rate curves would be described by a single curve. 

At this loading level, paramter (J is equal zero. I.e. ß follows a 

pattern  which can  be  simply  expressed as: 

ß^S o^max (31) 



where ß0 is a constant and S0 is related to the maximum stress 

value at which all probability crack growth curves become one 

curve.     Equation   (30)   could  be  written as: 

ff    -   Cl   (Ak)6   (-in  p)So"eoSmax (32) 

As mentioned before a basic assumption in the work of Ref. 

(2) is that the median of the constant probability crack growth 

equation, i.e., the curve with Pr(i) - 0.5, can be described 

using a continuum crack growth law. By invoking this assumption 

the validity of Equation (30) could be examined using results of 

tests carried out on Al 7075-T6 specimens (3). In this work the 

crack length versus nuraber-of-cycles was obtained for three 

different stress conditions. Each condition was tested by using 

sixty identical center-notched flat specimens (320.67 x 50.8 x 

3.175 mm) resulting in sixty crack-growth curves, each consisting 

of 256 points generated through the use of an automated 

photograp-hic technique detailed in Ref (3). The results of this 

study and the corresponding experimental constant probability 

crack growth curves are shown in Figures 5-8. Following an 

argument discussed in the above mentioned study, Forman's 

Equation (6) was selected as a suitable continuum crack-growth 

law since it recognizes the effect of the stress ratio R and is 

well   documented  for A17075-T6;   it   is  written  as 



da C     AK       __ 
dl   "   (1-R)(K   -K        ) 

c    max 
(33) 

where 

Kc  -  TU  MPa-m^ 

C   -   1.63  x  10"17 

m   -   3.065 

The results of the comparison of this equation with those 

experimentally obtained for Pr(l) - 0.5 are shown in Figure 9; 

they   Indicated close agreement. 

The above equation could now be equated to Equation (30) In 

which Pr(l) - 0.5. In this equality the parameter 6 Is set equal 

to m of Formann equation, I.e., 6 - 3.065. Using an Iterative 

numerical technique that employs the Newton-Raphst on method, 

values of C^ and ß for the three different load conditions were 

obtained: 

test  condition I test   condition  II test   condition  III 

C^ 2.64xl0-,, 

8 0.195 

l^SxlO"14 

0.203 

l.^xlO"11 

0.299 

The   parameters   Cj,   and   ß   were   then   substituted   In  Equation   (30) 

to  generate,   for  each  load   condition,   the  entire   spectrum   of   the 



constant probability crack growth rate curves. These curves were 

compared to those experimentally obtained in Figure 8. Results 

of this comparison, in the form of per cent age-of- error of 

number-of-cycles corresponding to a similar crack length, are 

summarized in Figures 10. These results show that the error of 

the model under test conditions I, II and III are ±2.5%, ±5% and 

±8t respectively. This degree of error is similar to that 

obtained when Ar is expressed by equation (15), see Ref. (3). 

Furthermore, a comparison between both the theoretical and 

experimental cumulative distribution function for selected crack 

lengths, at the three different loading conditions, are shown in 

Figure  11;   they indicate  a very  close agreement. 

Summary 

This paper has outlined the principle of a st^ astic model 

aimed at describing crack growth and its variability due to 

random characteristics of the microstructure of polycrystalline 

solids. The model was built by developing an analogy to a 

discontinuous Markovian process. This treatment leads to the 

calculation of the cycle duration required for a point along the 

crack tip to advance with a particular probability to a forward 

state along the fracture surface. This probability is governed 

by a transition intensity parameter, Ar, which is viewed here as 

material- and cycle-dependent. In the absence of a definite 

physical interpretation of this parameter, It has been given two 

mathematical expressions which differ in that one expression, Xr, 

possesses   a   value   when   Al   approaches   zero,   while   in   the   other 



expression Xr becomes zero as Al + 0. The paper examined the 

latter condition which then led to the derivation of a crack 

growth rate equation In which a probability term Is explicit. 

Comparison of the results of this equation, when applied to 

A17075-T6 for three different loading conditions, Indicates 

agreement with experimental results obtained by the author for 

the  same loading conditions. 
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EXPERIMENTAL STUDY OF THE CONSTANT- 
PROBABILITY CRACK GROWTH CURVES UNDER 

CONSTANT AMPLITUDE LOADING 

H. GHONEM AND S. DORE 
Mechanics of Solids Laboratory, Department of Mechanical Engineering and Applied Mechanics, 

University of Rhode Island, Kingston, RI 02881, U.S.A. 

Abstract — This paper is concerned with the application of a mathematical model that describes 
the fatigue crack growth evolution and associated scatter in polycrystalline solids. The model has 
been built on the basis that an analogy exists between a particular discontinuous Markovian 
stochastic process, namely the general pure birth process, and the crack propagation process. The, 
crack evolution and scatter were then defined in terms of material, stress and crack-length dependent 
properties and crack tip incubation time. 

The application of the model is carried out by comparing the constant-probability crack 
growth curves generated for three different load levels with those obtained from testing sixty Al 
7075-T6 specimens for each load level. A photographic method was utilized to measure the crack- 
length in this test program, by recording the residual deformation that accompanies the flanks of 
the crack during propagation. 

INTRODUCTION 
PREDICTION OF fatigue crack growth, even under constant amplitude loading, has not been an easy 
task. This is mainly because the manner in which the various parameters, such as loads, material 
properties and crack geometries, affect the crack propagation is not clearly understood[l]. This, 
consequently, had led to a proliferation of hypotheses and laws for describing fatigue crack 
propagation (see review articles in refs [1,2 and 3]). Most of these models are based on concepts 
of the continuum theory with the assumption that cracks propagate in an ideal continuum media. 
Actual metallic materials, however, are composed of random microstructure described by various 
microparameters which can seriously affect the growth of a crack in these materials. As a result, 
the deterministic theories can only be accepted as an approximation of the actual random fatigue 

« crack propagation process. 
The use of statistical distributions or probabilistic models thus becomes necessary to make 

predictions of crack growth more reliable. The search for the "true" statistical distribution has 
been a difficult task since in any application, the amount of crack-growth data which has been 
collected for any particular case would not be sufficient to discriminate between the different types 
of distributions^]. In addition, when a series of tests on identical specimens is performed to 
establish the scatter due to material properties, the uncertainties in load values and crack-length 
measurements are also included in the scatter data. Due to this limitation, it is difficult to isolate 
the scatter associated with material properties in any experiment. One is also hampered by the 
lack of an exact physical description of the fatigue process[S]. When taking these two factors into 
consideration, any probabilistic or statistical model can identify the variability of crack-length 
only in a comparative sense. This means that the absolute values of the variability at a specific 
load level predicted by a model may not be equal to those obtained experimentally. However, it 
is possible for a ratio of variabilities predicted for two different load conditions to be equal to 
that of the experimental results obtained at the same loading conditions. In this, the experimental 
errors being independent of the magnitude of the applied loads, are eliminated. 

There are basically two kinds of mathematical models in existence to predict the variability 
in fatigue crack growth. The first employs a statistical approach in which random variables are 
introduced instead of the constants in the appropriate deterministic crack growth equation. While 
these models (see, for example refs [&-I1]) are simple to use and versatile in application, they 
possess some disadvantages First, all of them are based on Paris Iaw[l2] where it has been shown 
that other laws like the Forman's Iaw[l3] are more applicable. Secondly, the scatter parameters 
in these models have no physical description and no attempts have been made to link these 
parameters to the micro-structural properties Lastly, though these models generate crack-growth 
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data that match the experimental data reasonably well in some cases, they do not provide any 
insight into the nature of the fatigue crack propagation process. 

The second approach employs evolutionary methods in which the propagation of the crack 
is treated in a probabilistic or stochastic sense instead of a statistical one. Making use of a specific 
probability process, namely the Markovian process, the models with this approach strive to 
correlate the properties of this process with those of fatigue crack propagation. 

Examples of this approach are the models by Ghonem et a/.[14, IS], Kozin and Bogdanoff[16] 
and Aoki and Sakata[17]. The major disadvantage in using these models is the lack of crack- 
growth scatter data for different conditions which would have been helpful to check the validity 
of the probabilistic assumptions on which these models were built. 

The objective of this paper is to examine the results of the stochastic model developed by 
Ghonem and Dore[15] when utilized for the prediction of the crack growth evolution, in the same 
material, at different loading conditions. Before proceeding on this application, a brief review of 
the fundamentals of the model is presented in the next section. This will be followed by the 
description of the experimental study and detailed analysis of the results. 

REVIEW OF THE PROPOSED MODEL 

In this model, the fracture surface is divided into a finite number of crack "states" of equal 
width; a probability space of two events was defined with the condition that the crack is in state 
"r" after i cycles have elapsed from the instant of reaching "r". They are, the event that the crack 

I will remain in the state "r" and the event that the crack will not be in "r". Assuming that the 
crack propagation process is irreversible and utilizing the fact that under conditions of constant 
amplitude loading the existence of a crack at a particular state depends only on its present 
mechanical and microstructural details, a definition for the transition probability was arrived at. 
Using the criteria attached to the discontinuous Markovian process[18], a transition intensity (A,) 
could be defined. In this approach, k is assumed to be a material parameter which in addition to 
being a function of the crack position "r", should explicitly depend on both the initial elapsed 
cycles i and the incremental duration Ai. The propagation process thus becomes time- 
inhomogeneous. This characteristic is a departure from the works of Ghonem and Provan[14] 
and Kozin and Bogdanoff[16]. 

The probability equation was then derived and can be written as: 

\n Pr{i) = Bie*'° - e*)   ;   . >/0 (1) 

= 0 ;   «</o 

where i is the number of cycles, B and K are crack-length and stress dependent variables, Pr{i) is 
the probability of the crack being at a state "r" on the fracture surface after < cycles elapse and 
I0 is the minimum number of cycles required for the crack to advance from one position on the 
fracture surface to the next and is also crack-length and stress dependent. 

This derivation was made by defining the transition intensity Ar and the Incubation time In 

in the following form. 

Ar = |^ (2) 

/0 = C3l(r- D-'-r"'] (3) 

where (4) 

Ä = C, f1 (5) 

K= C2r"2 

and C|, Cj, C3. H\, MI and «j are material, applied stress and environment dependent parameters. 
These functions (eqs 2 and 3) were verified with the available crack growth scatter data based on 
the works of Virkler ei ü/.[19] and Yang et fl/.[6]. 
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As can be seen, identification of the six constants is sufficient to define eq. (1) at any crack 
position so as to calculate the associated number of cycles elapsed for any probability (Pr{i)) value. 
Carrying out this operation for a given probability value at all the crack states in a cumulative 
manner, will generate a crack-position versus number-of-cycles curve representing the probability 
with which a crack spends a certain number of cycles at any state. 

Here, one should observe that the constants in these mathematical functions can be calculated 
by considering the crack growth curve obtained by using a continuum equation as being the 
P,(i) = O.S curve. This can be done numerically, and the crack growth scatter at any crack length 
and at any fatigue load can be defined without the need to perform large number of fatigue tests. 
As mentioned before, the results of the model, when applied to Al 2024-T3 that was 
subjected to load cycles of constant amplitude, were in agreement with those experimentally 
obtained with the average error in the theoretical curves estimated to be 5%. 

In order for the model to have a wider scope of application, it has to be substantiated for 
different loading conditions and for different materials. The first step in that direction is the 
verification of the model for different loading conditions on the same polycrystalline material. The 
experimental set-up and procedure used for this purpose are described in the next section. 

DESCRIPTION OF THE EXPERIMENTAL SET-UP 

Tests were conducted on Aluminium 7075-T6 alloy and crack-length versus number of cycles 
data were collected at three different stress levels. Each level was tested by using 60 identical 
specimens to establish the degree of crack-length scatter during propagation. 

A rectangular specimen (320 mm x 101 mm) with a thickness of 3.175 mm and a center- 
cracked tension geometry was used throughout the test program. The direction of the center-crack 
chosen was perpendicular to the rolling direction of the sheet from which the specimens were cut 
as shown in Fig. 1. The dimensions of the specimen and the crack initiating notch are based on 
the ASTM E647 recommendations and are shown in Figs 2 and 3 respectively. The specimen ends 
were fixed to the test system by flat end grips whose dimensions are also based on the ASTM 
E647 recommendations. 

A study was carried out to compare the available crack-length measuring techniques namely, 

(a) The Photographic Technique, 
(b) The Drop Potential Method, 
(c) The Mechanical Method, 
(d) The Electrical Technique, 
(e) The Acoustic Method, 
(0 The Ultrasonic Method   and 
(g) The Visual Method. 

The results of this study, based on refs [20, 21 and 22] are detailed in ref. [23]. The conclusion 
was that the method of photographing the crack during propagation was the one most suited for 
the present program, since it is capable of tracing the growth of one point along the crack-front 
as opposed to a technique that measures the average position of the crack front. 

The photographic technique used in this study depends on the reproduction of a sharp image 
of the deformed material along the flanks of the crack to make it possible to locate the crack-tip 
image and, consequently, to determine the crack-length with an acceptable degree of resolution. 
Since it is certain that in ductile materials, a sizable plastically deformed zone accompanies the 
crack during its propagation, especially in plane stress applications (see Fig. 4), this zone can be 
utilized as an accurate crack-length indicator. An example of this deformed zone is shown in Fig. 
S. It can be seen that the interface between the two fracture surfaces (the crack) is not present 
along with this image. As the crack increases in length, leading to a higher crack opening 
displacement, the separation of the fracture surfaces becomes visible as a dark line within the 
deformed zone. This is shown in Fig. 6. 

The testing configuration included a camera and a continuous light source positioned on one 
side of the specimen. The camera was triggered by an electrical pulse sent by a microcomputer 
that kept track of the elapsed number of cycles. Also, a number of shutter speeds, aperture settings 
developing solutions, processing times and film types were experimented with to achieve the best 
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Fig. 2. Test specimen in the present study. 

reproduction of this shear zone; these parameters are fully described in ref. [23]. 
A transmitted-light microscope equipped with a horizontal travelling table was used to 

determine the length of the image of the plastically deformed zone. The measurements were made 
by a digital micrometer having a resolution of 1 /on and transferred, after suitable interfacing, to 
a microcomputer for acquisition and subsequent analysis (see Fig. 7). 

The error in these measurements was determined by comparing an actual crack-length, 
measured directly on the specimen's surface, and the length of its corresponding shear zone. This 
comparison, which was made in the cases of 1 x and 2 x magnifications (see in Table 1) indicated 
that the errors associated with the 2 x magnification, which was adopted throughout the test 
program, were lower. The region of interest used for recording the shear zone was limited to the 
central 28 mm on the 36 mm frame. Using a 2 x magnification, this meant that a maximum of 
14 mm of crack growth was photographed in any test. 

All the 180 tests carried out in this study were performed on a closed loop, servo-hydraulic 
Material Test System (MTS-880) capable of controlling loads within 0.2%. 

Based on ASTM E647 recommendations, the initial crack-length, a0 was chosen to be 
10.00 mm; however, the crack-lengths were recorded from a length of 9.00 mm onwards. The final 
crack-length (a,) for the purposes of this test program was limited to 23 mm measured from the 
center line of the test specimen. The loading parameters were then selected so that the crack 
transition from the normal mode to the shear mode could not occur before the crack reached this 
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specified length, i.e. 23 mm. This condition was imposed on the loading parameters in order to 
avoid the problem of defining the crack-length in the shear mode. 

Tests were executed at three different stress ratios R; R = PmJPm„, where Pmi„ is the minimum 
load level and Pm„ is the maximum load level. The loading sequence for fatigue pre-cracking and 
the three test load conditions are detailed in Tables 2 and 3, respectively. A frequency of 10 Hz 
and a ramp waveform were selected for the loading cycle. 

Figure 8 is an example of the results obtained in this test program showing the progress of 
the crack length at different loading cycles for one of the loading conditions. 

EXPERIMENTAL RESULTS 

As mentioned in the previous section sixty specimens were tested for three stress levels and 
crack-length (a) versus number-of-cycles {N); data was recorded from a length of 9 mm to a length 
of 23 mm. It may be recalled that the initial crack-length chosen for this test program was 10 mm 
and not 9 mm. Data between 9 mm and 10 mm will be used for future work on short crack, 
behaviour and the co» iparison between the theoretical probability crack-length versus number of 
cycles data. The experimental data will be made from the initial crack-length of 10 mm onwards. 
Crack-growth data (a vs N) for the three stress conditions is shown in Figs 9-11. 

The next step in the analysis is the selection of the width-of-crack state for producing 
experimental data suitable for comparison with that generated by the mathematical model [IS]. 
As can be seen from Table 1, the maximum error between the shear zone recorded on film and 
the crack-length measured from the specimen was estimated to be 0.163 mm. Using a conservative 
approach, the maximum error was assumed to be 0.2 mm and this was considered to be the state 
width. 
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Fig. 3. Crack initiating notch. 
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Table 1. Comparison of the actual crack-length with the length measured from the film (all dimensions in mm) 

Measured value Magnification Corrected Actual Error 
(A/) (m) (C) 

(C - M/m) 
M) (A-C) 

4.882 1.058 4.612 4.831 0.218 
8.047 1.045 7.700 7.755 0.055 

11.624 1.045 11.123 11.206 0.083 
18.855 1.045 18.043 18.082 0.039 

8.208 2.000 4.104 4.202 0.098 
17.028 2.000 8.514 8.677 0.163 
15.950 2.000 7.975 8.042 0.067 
17.6*7 2.000 8.846 8.924 0.078 
19.841 2.000 9.920 9.956 0.035 
23.023 2.000 11.501 11.592 0.090 
26.161 2.000 13.080 13.153 0.072 
29.803 2.000 14.901 15.018 0.116 
31.623 2.000 15.811 15.892 0.081 

Table 2. Loading sequence for fatigue pre-cracking (all loads in kN) 

Load level till Load level till 
crack was generated crack reached 7.5mir i 

(20 Hz) (20 Hz) 
Test 

Condition ''«. fm ^p /•«. ^,„ AP 

I 25.95 8.30 17.65 26.55 13.55 13.00 
II 29.30 7.70 21.60 24.80 10.65 14.15 
III 26.30 7.70 18.60 21.50 7.30 14.20 

Table 3. Test load conditions (alt loads in kN) 

Test 
Condition Pm„ 

Test load level 
(10 Hz) 

P^                         AP                           R 

I 
II 
III 

22.7° 

15.19 

13.68 
11.13 
6.08 

9.11                          0.6 
11.12                        0.5 
9.11                          0.4 

***** 
22*22^ 

zzSL i— 

Shear Zone 

 Plastic Zone 

(A) 

lastic Zone 
converted to 
Shear Zone 

(B) 

(C) 

Rg. 4. Zone of plastic deformation in the vicinity of the fatigue crack[3IJ. 
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Fig. 1. Direction of crack with respect to the grain structure. 
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Fig. S. Photograph of the shear zone accompanying the crack. 



• • Constant-probability crack growth curves 

h'ig. 6. Photograph of the shear /one with a visible separation of the crack surfaces. 
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t. Crack length m 9.49S mm 
Number of cycles ■ 6380 

2. Crack length = 10.498 mm 
Number of cycles = 15510 

3. Crack length ■ 10.912 mm 
Number of cycles - 18960 

4. Crack length ■ 12.031 mm 
Number of cycles = 25360 

5. Crack length = 12.630 mm 
Number of cycles - 2X210 

6. Crack length = 13.000 mm 
Number of cycles - 29800 

l-'ig. 8 Crack evolution as recorded from specimen number I subjected to Test Condition-ll (Magnification 
I0X). 
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Fig. 7. Schematic of the camera-triggering and the crack-length measuring circuits. 
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Fig. 9. Crack-length vs number of cycles data from 60 specimens for Test Condition I. 

For a state width of 0.2 mm, the zone between 10 and 10.2 mm corresponded to an initial 
crack state (r()) of SI and the zone between 22.8 and 23 mm tu a final crack state (ry) of US, 
leading to a total of 65 crack states. Similar to the approach discussed in ref [IS], the number 
of cycles spent by a crack in each of these 65 states was calculated by interpolation of the avs N 
data. Thereupon, for all the stress levels, the interpolated values for each state in each of the sixty 
specimens was arranged in an ascending order. The lowest number of cycles was assigned a 
probability of: 

Pr(i) = I - (JC/60) x = 1 
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Fig. 10. Crack-length vs number of cycles data from 60 specimens for Test Condition II. 
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Fig. 11. Crack-length vs number of cycles data from 60 specimens for Test Condition III. 
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and so on up until the highest number of cycles whose corresponding probability value was: 

/>.(/) = 1 _ (x/60)    ;   ;c = 60. 

A probability range of 0.9-0.1 was selected for comparison of the experimental and the 
theoretical data. The curves obtained experimentally are plotted in Figs 12-14 with the probability 
values having decrements of 0.1. 

In these figures it is observed that the widest scatter band is associated with the test condition 
that produced the smallest mean crack-growth rate, Test Condition III, while the narrowest scatter 
band is associated with the Test Condition II in which the mean crack growth rate is the highest. 
This is due to the fact that when loads are high, the influence of the microstructure on crack 
propagation is diminished so that the degree of scatter of the av%N sample curves, in relation to 
the mean growth curve, tends to be limited. Similar observations were made by Yang et a/.[7] 
and this is perceptible in Fig. IS. 

THEORETICAL RESULTS 

Firstly, the continuum growth law to be utilized in the mathematical model was arrived at 
by investigating a number of crack growth equations with known material constants which 
recognize the effect of the stress ratio. Forman's equations[ 13,24] and the equation derived by 
Hardath et a/. [25] fall into this category. 

Forman's equation is generally written as: 

CiMCY da 
dN     (1 - R)Ke - UK (6) 

where a is the crack-length, N is the number of cycles, K is the stress intensity factor range, Kc is 
the critical stress intensity factor, R is the stress ratio and C and n are material constants. 

NUMBER    OF     CYCLES    X     lO 

Fig. 12. Experimental constant-probability crack growth curves generated for Test Condition I. 
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Fig. 13. Experimental constant-probability crack growth curves generated for Test Condition II. 
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Fig. 14. Experimental constunt-probahllity crack growth curves generated for Test Condition III. 
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The values of K* C and n for Aluminium 7075-T6 are listed in ref.[I3] as: 

Kc = 68 Ksi-in* (74 M Pa-m* 

C   = 5 x 10"13 U.S. Customary Units 

= 1.63 x 10-" SI Units 

n    = 3 

15 

and in ref.[24] as: 

Kc = 40 Ksi-in* (44 MPa-m*) 

C   = 2.13 x 10"" U.S. Customary Units 

= 1.60 x lO-'8 SI Units 

n    = 3.21. 

The equation derived by Hardarth et a/. [25] is: 

da 

where 

and 

vir 

Ken 

K     w ■     "max 

= («max - S^JmF 

(7) 

(8) 

(9) 

smtx is the maximum stress, 50 is the crack opening stress, y[m F is the stress intensity parameter 
for specimen configuration, ^m..is the maximum stress intensity factor, Kr is the fracture parameter 
[81 Ksi-in' (89 M Pa-w')], C and n are material parameters. 

o 
C - 3.83 x lO-8 SI Units 

« = 3.17. 
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Fig. 15. Variation of the scatter range with crack length for the three Test Conditions. 



16 H. GHONEM and S. DORE 

Of the above two laws, the one provided by Forman et a/.[13] was selected because it is 
based on data obtained from different laboratories as opposed to the equation of Hudson et a/. [24] 
that was derived after correlation with one set of experimental data. The growth law of Hardarth 
et a/.[2S] was also not utilized because the present mean experimental growth rate was different 
from that predicted by the law, by an order of magnitude for all the three stress levels. 

Having defined the continuum growth law and the corresponding material constants, the six 
constants C,, Cj, C* "i, «2- "3 were next calculated by obtaining their converged values using 
Newton-Raphson's method. 

The six constants for each load condition are: 

I II III 

c, 0.015127 0.010064 0.010105 

C: 1.9371 x lO-6 3.4055 x 10"6 1.9758 x lO-6 

c, 1.5940 x 10» 1.0888 x 10* 2.3151 x 10* 

«1 0.8000 0.7957 0.8514 

«2 1.4946 !.4991 1.3501 

•3 -0.7000 -0.6820 -0.8537 

Following the analysis presented in ref. [IS] the theoretical probability curves were plotted making 
use of these constants, in Figs 16-18. 

The percentage error of the number of cycles is plotted in Figs 19-21. The average value off 
the absolute errors was found to be 7%, 5% and 8% for the ', II and the III load conditions, 
respectively. 

A remark is warranted on the six constants that characterize the crack growth scatter. 
Though these constants depend on the load parameters, no attempt has been made to derive an 
explicit relationship. In fact, there is no need for an explicit relationship since they are computed 
directly from the continuum growth law. 

CONCLUSIONS 

(1) The mathematical model developed here provides a physical description for fatigue crack 
propagation as well as capability of predicting crack growth scatter at different stress levels. 
While the model uses the crack growth data from a continuum law as its input, it does not 
depend on a specific law. The only requirement is that such a law must be a correct 
representation of the mean growth curve. The model has been validated for two aluminium 
alloys Al 2024-T3 and Al 7075-T6 subjected to four different stress levels and is in the process 
of being applied to steel and titanium alloys. 

(2) The scatter data recorded for the second load condition (A/* = 11.12 kN, Pmn = 22.25 kN) 
of the experimental program has been observed to be the least widespread when compared 
with that obtained from other load conditions with lower values of AP. This can be attributed 
to the following phenomenon. The crack transition from a specific state is governed by a 
critical threshold energy at the crack tip. When such a threshold is satisfied in one cycle or 
an accumulation of several cycles, depending on the load condition and crack-geometry, the 
crack tip can then advance from its present state to the following one. 1 lence for larger loads 
and longer crack-lengths, the probability that this propagation threshold is satisfied increases 
rapidly with the number of elapsed load cycles while, for smaller loads and shorter crack- 
lengths, the probability of discrete crack growth advancement increases gradually. In this 
hypothesis the degree of scatter in achieving the required threshold energy reflects on the 
degree of scatter of crack growth. Fractographic analysis of fracture surfaces shows that, at 
the same crack-length, more striations per unit distance are present along the fracture surface 
of specimens subjected to a large load level (Test Condition II, see Fig. 22b) than in the 
specimens subjected to a lower load level (the Test Conditions I and III, see Figs 22a and 
22c). It is known that ductile fracture striations are formed due to a change in the orientation 
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Fig. 16. Theoretical constant-probability crack growth curves generated for Test Condition I. 
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Fig. 17. Theoretical constant-probability crack growth curves generated for Test Condition II. 
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Fig. 18. Theoretical constant-probability crack growth curves generated for Test Condition III. 
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Fig. 19. Error in percent of the proposed model in the constant probability crack growth curves for Test 
Condition I. 
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Fig. 22, (a)      (c) 
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Fig. 24. (a)      (b) 
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Fig. 21. Error in percent of the proposed model in the constant probability crack growth curves for Test 
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of the fracture surface along a specific slip plane[26, 27]. Therefore, a denser striation pattern 
is observed at loading conditions associated with higher growth rates because numerous 
orientation changes take place in a unit distance of the fracture surface. It follows that the 
energy required for these changes is achieved more frequently under these conditions. Using 
this analogy at a macroscopic level, it can be said that the crack tip propagation threshold 
is also achieved more often. These observations may act as another factor that substantiate 
the fact that larger loading conditions result in a smaller degree of crack-growth scatter. 

The changes in the orientation of the fracture surface along a specific slip-plane are 
reflected as the waviness of the crack path on the specimen surface. This is shown in Figs 
23(a) and (b). In view of the explanation given previously, increased waviness of the crack 
path (measured in terms of the horizontal distance required for the crack propagation direction 
to change) is related to increase in the externally applied load levels and thus the degree of 
crack growth scatter at a particular load level could be related to the wavines of the crack 
path. Quantification of this dependence has not been attempted here. 

The phenomenon of crack-tip branching was also observed. Typical examples are shown 
in Fig. 24(a) and (b). While the existence of branching certainly contributes to the degree of 
crack growth scatter due to random loss of propagation energy at the crack tip, the extent 
of this contribution is not known. Both the effect of the waviness and that of the crack-tip 
branching on the degree of crack growth scatter are under study by the authors. 

(3) The use of the present model is directed towards two applications. The first is the constant 
amplitude loading which, while representing a simple load spectrum, does jccur in practice; 
e.g. pressurization cycles in transport aircraft cabins, rotating bending stresses in generators, 
thermal stress cycles in pressure vessels. This application has been examined in this paper. 
The second application is the variable amplitude loading which could be a two-step load 
sequence (low-high, high-low) or a spectrum of random loads. Variable amplitude loading is, 
however, a complex problem due to the fact that the crack tip damage per cycle under such 
loading is not only controlled by the stress amplitude of the current cycle, but also by the 
preceding load history. It is generally agreed[28-30] that this dependence is only transient 
in nature and should not exist after a certain duration of cycling. 

Reflecting this concept on the fundamentals of the constant-probability crack growth 
model, one observes two areas where modifications can be made to account for the history 
dependence of the crack growth process due to load changes. The first, is the assignment of 
appropriate mathematical functions for the variables £, K and /0 to take this phenomenon 
into consideration. The Markovian approach in the model is not violated because even though 
the crack tip conditions depend on the loading history, the propagation process is affected 
only by the present crack tip conditions. On the basis of the existing works on variable 
amplitude loading, it can be said that the mathematical functions cannot be arrived at by 
simple superimposition. However, quantification of the crack growth rates for variable 
amplitudes, even in the deterministic sense has not been accomplished so far. Only if that is 
achieved, will modifications for B, K and /„ be possible. 

The other area where modification must be made is the consideration of initial crack- 
length (OQ). In the present r.iooci, a0 was a constant as a result of an imposed experimental 
condition. Thus, the model provides a distribution of the number of cycles required for 
a crack to reach a specified discrete state from aa. No attempt has been made to consider 
an initial crack-length distribution and the manner in which it will affect the constant 
probability curves. Attempts to interpret the constant-probability growth curves in terms of 
a distribution of crack states after a specified number of cycles have elapsed from the instant 
the crack reached a{) were also not made. Only this type of a distribution is useful for variable- 
amplitude loading application because the history of the fracture process is described in terms 
of the number of cycles. The recognition of this distribution is an important step since it 
represents the initial crack-length configuration which is a necessary boundary condition for 
the new load spectrum. 
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